
June 2016, Volume 3, Issue 6 JETIR (ISSN-2349-5162)

JETIR1606010 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 45

Implementation of the AES Realization Method On

Reconfigurable Hardware

1
Pramod Tidke,

2
Prof. Nilesh Mohota

1
M.Tech Student,

2
Assistant Professor

1
Electronics Department

1
JD College of Engineering & Management, Nagpur, India

Abstract—This paper presents a VLSI implementation of the Advanced Encryption Standard (AES) algorithm. The AES is a

Federal Information Processing Standard (FIPS), which is a cryptographic algorithm that is used to protect digital data. AES

encryption and decryption requires a 128 bit wide input block and a 128 bit wide input key. Under the influence of a key

schedule the input block is encrypted by transforming it in a unique way into a new block of same size. The major emphasis is

on presenting a power and moreover an area optimized AES. For implementing AES Rijndael algorithm on FPGA we will

choose VHDL as the design entry technique. Xilinx ISE Design Suite version 14.7 will be used for the Synthesis and

Simulation of the code.

Keywords—AES, FIPS, Rijndael, FPGA, FSM, plaintext, ciphertext,VHDL,XILINX

__

I. INTRODUCTION

RYPTOGRAPHY is the science and study of creating and

using systems for communicating in secret via

communication channels that are not secure. With the rapid

development and wide application of computer and

communication networks, the information security has

aroused high attention. Continuous development is seen in

Cryptographic Techniques. For a long time, the Data

Encryption Standard (DES) was considered as a standard for

the symmetric key encryption [2].DES has a key length of

56 bits. But due to the successful breaks on this small key

length the National Institute of Standards and Technology

(NIST) opened a formal call for algorithms in September

1997.A group of fifteen AES candidate algorithms were

announced in August 1998. Next, all algorithms were

subject to assessment process performed by various groups

of cryptographic researchers all over the world. Five

algorithms were selected and subjected to further analysis.

Finally, on October 2, 2000, NIST declared that the Rijndael

algorithm, invented by Joan Daemen and Vincent Rijmen,

was the winner [2]. Rijndael can be specified with key and

block sizes in any multiple of 32 bits, with a minimum of

128 bits and a maximum of 256 bits [1]. Therefore, the

problem of breaking the key becomes more arduous.

The input and output for the AES algorithm consists of

sequences of 128 bits. These sequences are referred to as

blocks and the numbers of bits they contain are referred to

as their length. The Cipher Key for the AES algorithm is a

sequence of 128,192 or 256 bits. The basic unit of

processing in the AES algorithm is a byte, which is a

sequence of eight bits treated as a single entity [1].

Internally, the AES algorithm’s operations are performed on

a two-dimensional array of bytes called the State. The State

consists of four rows of bytes. Each row of a state contains

Nb numbers of bytes, where Nb is the block length divided

by 32.

The AES algorithm can be implemented by hardware as

well as software. Software implementations cost the least

resource but offer slowest process. Besides, growing

requirements for high speed, high volume secure

communications combined with physical security, hardware

implementation of cryptography takes place.

II. OVERVIEW OF AES

The principle design of AES is based on substitution

permutation network, which can take a block of the

plaintext and the key as inputs. It is a round-based

encryption algorithm [4]. The number of rounds, Nr, is 10,

12, or 14, when the key length is 128, 192 or 256 bits,

respectively as shown in Table I.

There are four transformations provided in this algorithm:

C

June 2016, Volume 3, Issue 6 JETIR (ISSN-2349-5162)

JETIR1606010 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 46

Sub Bytes, Shift Rows, Mix Columns and Add Round Key.

The first and the last rounds differ from other rounds in that

there is an initial Add Round key transformation at the

beginning of the initial round and Mix Columns

transformation is not performed in the last round. Using the

initial input key a key schedule module generates iterative

keys which are different for every round.

 Key length (words) Number of rounds (Nr)

AES - 128 4 10

AES - 192 6 12

AES - 256 8 14

A. Rjindael Mathematics

The computations required in this algorithm are mainly

done in the finite field GF (2
8
). A field is a commutative

ring in which all non-zero elements have multiplicative

inverses.GF stands for Galois Field []. The field elements

are represented as polynomials. Here, the coefficients of the

field elements are modulo 2 and an irreducible polynomial

f(x) is chosen of degree 8. The irreducible polynomial that is

used is:

F (x) = x
8
 + x

4
 + x

3
 + x + 1.

The notations used to describe Rijndael are hexadecimal

numbers. These numbers must be converted first to binary

numbers such that the coefficients of the polynomial can be

determined. For example the hexadecimal number ’D2’ can

binary be represented as ’11010010’.This represents the

polynomial:

x
7
 + x

6
+ x

4
 + x.

B. Encryption Transformations

Sub Bytes is a nonlinear transformation, which computes

the multiplicative inverse of each byte of the State in GF

(2
8
) followed by an affine transformation. Computation for

each byte is stored in a lookup table which is called S-box

[1].

Shift Rows is a transposition step where the last three

rows of the state are shifted left cyclically a certain number

of steps. For Nb = 4 Row 1 is shifted over 1 byte, Row 2

over 2 bytes, and Row 3 over 3 bytes.

Mix Columns is a mixing operation which operates on the

columns of the state, combining the four bytes in each

column. It is basically a matrix multiplication but in Galois

field. Fig. 1 shows the matrix multiplication representation.

Add Round Key operation is a simple EXOR operation

between the State and the Round Key. The Round Key is

derived from the Cipher key by means of the key schedule

module.

Figure1: Mix Column Multiplication on column of a state

C. AES Encryption Process

Fig.2 gives the flowchart for the AES encryption Process.

 Figure 2: AES Encryption Flow

Table I: Number of Rounds (a word is 32 bits)

June 2016, Volume 3, Issue 6 JETIR (ISSN-2349-5162)

JETIR1606010 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 47

D. Decryption Transformations

Add Round Key is its own inverse function because the

XOR function is its own inverse. The round keys have to be

selected in reverse order.

Inv Shift Rows functions similar to Shift Rows, only the

last three rows of the state are shifted right cyclically instead

of left.

Inv Sub Bytes is done using a pre-calculated substitution

table called Inv S-box. This table contains 256 numbers

(from 0 to 255) and their corresponding values.

Inv Mix Columns is a mixing operation which operates

on the columns of the state, combining the four bytes in

each column. It is basically a matrix multiplication but in

Galois field. Fig. 3 shows the matrix multiplication

representation.

Figure 3:InvMix Column Multiplication on a column of a state

E. AES Decryption Process

 Fig.4 gives the flowchart for the AES decryption Process.

 Figure 4: AES Decryption Flow

F. Key Schedule

Key scheduling is a process aimed at generating (Nr +1)

round keys based on a single input key. This process

consists of two phases called Key Expansion and Round

Key Selection. The pseudo code for Key Expansion is

shown below.

For i =0 to N k - 1

 W i = key i

end

for i = N k to 4(Nr + 1) - 1

 temp = wi-1

 if (i mod Nk = 0)

 temp = SubWord(RotWord(wi-1)) XOR Rcon(i /

Nk)

 else if (Nk> 6 and i mod Nk = 4)

 temp = SubWord(wi-1)

 end if

June 2016, Volume 3, Issue 6 JETIR (ISSN-2349-5162)

JETIR1606010 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 48

 wi = wi-Nk XOR temp

end

In the key expansion, the Sub Word applies Sub Bytes

transformation to each of the four bytes in a word, while the

Rot Word cyclically shifts each byte in a word one byte to

the left. The Rcon is a constant word array, and only the

leftmost byte in each word is nonzero [8].

III. DESIGN METHODOLOGY AND FPGA IMPLEMENTATION

Our goal is to implement AES on FPGA and its power

performance. We will present the novel architecture for

AES. The novel architecture is optimized for power using

RTL clock gating technique. To create a novel architecture

for AES we used FSM to execute the encryption and

decryption using a common block. This resource sharing

reduced the area effectively. A finite-state machine (FSM) is

a mathematical model of computation used to design

computer programs and sequential logic circuits. It is

conceived as an abstract machine that can be in one of a

finite number of states defined for that machine. The

machine is in only one state at a time. The state it is in at

any given time is called the current state. It can change from

one state to another when initiated by a triggering event or

condition which is called a transition. A particular FSM is

defined by a list of its states, and the triggering condition for

each transition. Finite-state machines can model a large

number of problems, among which are electronic design

automation, language parsing, communication protocol

design and other engineering applications.

IV. POWER OPTIMIZAION OF AES

As consumers continue to demand more functionality in

smaller, more efficient devices, power optimization rules a

hardware designer's life. For all applications, the total power

consumption of complex SOCs presents a challenge. Low

power methodology describes the most effective new

techniques for managing dynamic and static power in SOC

design.

Dynamic power is the power consumed when the device

is active i.e. when signals are changing values. Static power

is the power when device is powered up but no signals are

changing values. Low power decision involves what

techniques to use, when and where and on what sections of

the chip.

Clock Gating is one of the effective Low power

Techniques. A significant fraction of the dynamic power in

a chip is in the distribution network of the clock. Clock nets

have very high capacitances which results in 50% or more

dynamic power dissipation. The flip flops receiving clock

dissipate power even if input equals the output. So to reduce

such dissipation, clocks should be turned off when they are

not required. This is achieved without changing the function

of the logic using modern design tools.

In the traditional synchronous design style used for most

HDL and synthesis-based designs, the system clock is

connected to the clock pin on every flip-flop in the design.

This results in three major components of power

consumption: 1) power consumed by combinatorial logic

whose values are changing on each clock edge; 2) power

consumed by flip-flops (this has a non-zero value even if the

inputs to the flip-flops, and therefore, the internal state of

the flip-flops, is not changing); and 3) the power consumed

by the clock buffer tree in the design. RTL clock gating has

the potential of reducing both the power consumed by flip

flops and the power consumed by the clock distribution

network [9].

Figure 5: Latch free Clock Gating

Figure 6: Latch based Clock Gating

Fig 6 represents simple latch free gating. Latch free gating

makes the design sensitive to glitches. This makes it as the

June 2016, Volume 3, Issue 6 JETIR (ISSN-2349-5162)

JETIR1606010 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 49

least preferred clock gating technique. Another popular

clock gating technique is the latch based clock gating. In

latch based clock gating, latch is used as control element, it

controls the Enable pin. In negative clock cycle, latch is al-

lowed to reflect the change of Enable pin. In positive clock

cycle, output of latch remains fixed. The high output of

latch allows the clock to reach sequential logic.

The period in which, we can sense the change in Enable

signal is called active period, and other period in which we

cannot sense the change in Enable signal is called sleep

period.

Fig. 8 represents a novel clock gating method i.e. the FF

based Clock Gating. In FF based clock gating, FF is used as

control element. When the negative edge of clock arrives,

change of Enable will be reflected on FF output. If output of

FF is high, clock is applied on sequential circuit. The sleep

period is longer in FF based clock gating compared to Latch

based clock gating. It means there is a greater chance to

miss the change that happens on Enable signal [10].

Figure 7: FF based Clock Gating

V. CONCLUSION

We will implement an efficient architecture of AES. The

synthesis and simulation results will achieved using Xilinx

ISE 14.7. For hardware implementation we will use ALtera

FPGA.

REFERENCES

[1] J. Daemen and V. Rijmen, "AES Proposal: Rijndael.

NIST AES Proposal," June 1998. Available at

http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf.

[2] National Institute of Standards and Technology (U.S.),

"Advanced Encryption Standard (AES)," Available at

http://csrc.nist.gov/publications/drafts/dfips-AES.pdf.

[3] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao,

P. Rohatgi, "Efficient Rijndael encryption

implementation with composite field arithmetic,"

Lecture Notes in Computer Science 2162 (2001) 171–

184.

[4] J. Daemen, V. Rijmen, " AES proposal: The Rijndael

Block Cipher, " Version 2 (Sept. 1999) pp. 1–45.

[5] Mr. Atul M. Borkar, Dr. R. V. Kshirsagar and Mrs. M.

V. Vyawahare, “FPGA Implementation of AES

Algorithm”, International Conference on Electronics

Computer Technology (ICECT), pp. 401-405, 2011 3rd.

[6] Leelavathi.G, Prakasha S, Shaila K, Venugopal K R, L.

M. Patnaik "Design and Implementation of Advanced

Encryption Algorithm with FPGA and ASIC",

International Journal of Research in Engineering &

Advanced Technology (IJREAT), Volume 1, Issue 3,

June-July, 2013.

[7] A. Menezes, P. Van Oorschot, and S. Vanstone,

“Handbook of applied cryptography”, CRC press, New

York, 1997, pp. 81-83.

[8] Xinmiao Zhang, Student Member, IEEE, and Keshab K.

Parhi, Fellow, IEEE "High-Speed VLSI Architectures

for the AES Algorithm", IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI)

SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004.

[9] Frank Emnett and Mark Biegel ,"Power Reduction

Through RTL Clock Gating", SNUG San Jose 2000.

[10] Dushyant Kumar Sharma ,"Effects of Different Clock

gating Techniques on Design", International Journal of

Scientific & Engineering Research Volume 3, Issue 5,

May-2012.

